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Objective: Although repeated-measures designs are increasingly common in research on psychosomatic medicine, they are not well
suited to the conventional statistical techniques that scientists often apply to them. The goal of this article is to introduce readers
to mixed regression models, which provide a more flexible and accurate framework for managing repeated-measures data. Methods
and Results: We begin with a summary of the advantages that mixed regression models have over conventional statistical
techniques in the context of repeated-measures designs. Next, we outline the conceptual and mathematical underpinnings of mixed
regression models for a nonstatistical audience. The article ends with two examples of how these models can be applied in
psychosomatic research; one deals with a prospective investigation of depressive symptoms and change in body mass index in older
adults and the other with a diary study of social interactions and cortisol secretion. Conclusions: Mixed regression models offer
a flexible and powerful approach to analyzing repeated-measures data. They possess important advantages over more traditional
strategies, and more widespread application of these models is likely to enhance the overall quality of psychosomatic research. Key
words: mixed regression models, analysis of change, repeated measures, nested designs, random effects.

HLM ! hierarchical linear model; OLS ! ordinary least squares;
ANOVA ! analysis of variance; BP ! blood pressure; CES-D !
Center for Epidemiologic Studies–Depression; BMI ! body mass
index; D ! dominance; EPAQ ! Extended Version of the Person-
ality Attributes Questionnaire.

INTRODUCTION

The purpose of this article is to introduce readers to mixed
regression models for repeated-measures data. In epide-

miologic studies, measurements typically occur over many
months or years, because the interest is usually on changes in
disease processes and outcomes. In diary studies, in which the
interest is usually in short-term fluctuations in physiological
or behavioral processes, measurement occasions span min-
utes, hours, or days. These measurements are often obtained at
unequal intervals or at different time points for different
individuals, and some measurements may be missing. This
can pose problems for traditional methods like repeated-
measures analysis of variance (ANOVA). Mixed regression
models offer a flexible alternative for dealing with these
unbalanced data sets.

Repeated Measurement Data Structures
Mixed regression models, a class of statistical models devel-

oped for the analysis of data structures with nested sources of
variability, include hierarchical linear models (HLMs), growth
curve models, and random coefficient models. They are rooted in
time series analysis (1), mixed and variance components models

(2), random effects models (3), and empiric Bayes models (4).
Nesting occurs when units of observations at one level are
clustered within higher-level observations. Examples of two-
level nested structures include students within classrooms, chil-
dren within families, families within neighborhoods, and spouses
within couples. Nesting normally produces dependencies in the
lower-level units. Sometimes this dependency is a nuisance that
has to be controlled for, but it is often at the heart of the research
question, specifically when the goal is to understand the source of
the observed dependency. For example, in a data set in which
families are nested within neighborhoods, the question may be
how neighborhood-level characteristics (the higher-level units)
such as social capital or median income relate to phenomena at
the family level (the lower-level units) like children’s educational
achievement or delinquent behavior. Repeated-measures data
represent a special kind of nesting in which units of measure-
ment are nested within individuals. Dependency is the norm in
repeated-measures data because observations obtained from the
same individual tend to be correlated.

An important consideration in repeated-measures designs is
whether to model time as a fixed or random factor. When the
observed levels of a factor are the only ones of interest to the
researcher, their effects on the outcome are fixed; they pertain
to these levels only and cannot be generalized to levels that
were not included in the study. This would occur, for example,
in a study of immune functions at specific moments before,
during, and after a discrete stressor; or in a study of well-being
and health at specific intervals before, in the midst of, and after
a woman goes through menopause. In other cases, the researcher
is not interested in quantifying a measured outcome for any
particular instance, but wants to infer its general pattern of change
over time. The appropriate strategy in this situation is to model
time as a random factor such that the moments of observation for
each person represent a random sample of all possible observa-
tions during the study period. A longitudinal study tracking blood
pressure (BP) levels throughout adulthood, or a diary study
examining changes in BP during 10-minute intervals, are exam-
ples of this kind.

Traditional techniques like repeated-measures ANOVA
can model time as either fixed or random, but violation of the
sphericity assumption is a central concern. Sphericity dictates
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that all pairwise difference scores between observations have
equal variance, but this is rarely found in unbalanced data sets.
Failure to meet the sphericity assumption results in a serious
liberal bias, or type I error (5). Although techniques such as
the Greenhouse-Geisser correction can compensate for sphe-
ricity violations, mixed regression models allow this assump-
tion to be relaxed altogether. Researchers can specify a variety
of covariance structures to account for specific patterns of
correlations. For instance, a first-order autoregressive struc-
ture is appropriate for many diary studies, in which correla-
tions between observations are assumed to be an exponentially
decreasing function of time. The choice of structure depends
on the design and assumptions of the study as well as the
nature and timing of the measurements. For a more detailed
discussion, see Petkova and Teresi, Nezlek, Nezlek, and
Schwartz and Stone (6–9).

It is also possible to analyze repeated-measures data in a
multivariate framework that does not impose restrictions on
the covariance matrix. However, this approach can lead to
model overfitting and convergence problems, especially when
the number of subjects is small relative to the number of repeated
observations per subject. Unlike ANOVA techniques, mixed
regression models do not require a “complete” data set, that is,
the same number of assessments on all participants. Multiple
imputation techniques provide another viable solution to the
problem of incomplete data (10). Both strategies are superior
alternatives to discarding data, at least when the data are assumed
to be missing at random.

In the next sections, we consider another critical aspect of
mixed regression models that sets them apart from ordinary
least squares (OLS) techniques of estimation—their ability to
simultaneously examine within- and between-person phenom-
ena that contribute to change. The analysis of change can be
thought of as being composed of two stages (11). In the first
stage, we ask: What is the general shape or form of the process
of change over time? Does it follow a linear or nonlinear
pattern of increase or decrease or perhaps a cyclical pattern?
We then use statistical modeling to derive a general form of
change in the outcome variable from the individual-specific
(within-person) patterns of change. In the second stage, we
examine the heterogeneity in patterns of change between
individuals and test the contribution of hypothesized factors to
this heterogeneity. In the next section, we explain how these
two steps fit into the general framework of the mixed regres-
sion model.

Basic Statistical Features of Mixed Regression Models
for Repeated Measures
The mathematical underpinnings of the mixed regression

model for repeated measures are presented in several excellent
textbooks (12–15). Briefly, the most basic form of the two-
level mixed regression model represents an outcome variable
Y as a function of an intercept (!0), a predictor variable A, and
a random error term:

Yij ! !0j " !1jAij " Rij (1)

The lower level (micro)units are indexed by i and the higher
level (macro) units are indexed by j. The lower level units are
measurement occasions and the higher-level units are individ-
ual subjects. In other words, Yij represents the outcome vari-
able at time i for subject j. We can visualize the analysis as a
set of j person-specific regression lines, one for each individ-
ual. Associated with each regression line are the coefficients
!0j and !1j. These represent, respectively, the person-specific
intercept and slope for individual j. These are presumed to
vary among individuals.

Equation 1 is a general model for the first, or within-person,
stage of analysis. In this phase, the analysis can take one of two
forms. For example, in a longitudinal study examining changes in
BP, the predictor variable Aij represents time elapsed since the
first measurement occasion. Replacing Aij with the notation tij
may be helpful in making this distinction. Thus, equation 1 is
simply the regression of the outcome variable Y (BP) on time.
This is commonly referred to as a growth curve model and is the
conventional model for the analysis of change. The intercept !0j

is usually modeled such that it represents the person-specific
value of Y at time “0,” or baseline. Similarly, the slope !1j

represents the person-specific rate of change of Y over time.
This modeling approach differs from the diary example, in

which the main interest was in how BP fluctuates with mood
state. In such an analysis, BP at time i for subject j could be
designated as the outcome variable Yij and mood state at the
same time in the same subject as the predictor variable Aij. In
this case, the predictor Aij is not time but a time-varying
covariate. Analogous to the first example, intercept !0j would
represent the predicted BP value (Y ) for subject j when mood
(A) was rated as 0, and slope !1j would represent the relation-
ship between mood state and BP across sampling times for
subject j.

In the second, or between-person, stage of analysis, the
goal is to determine which person-level characteristics may
explain differences in the within-person ! coefficients. Each
coefficient is further broken down into a group mean and a
deviation from that mean as follows:

!0j ! "00 " U0j (2)

!1j ! "10 " U1j (3)

These equations are referred to as unconditional models,
because they do not yet contain any level 2 predictors. "00 and
"10 signify the mean intercept and slope across all individuals.
These are considered to be fixed, or constant. U0j and U1j are
random variables designating the specific amounts by which
individual j deviates from these means. These quantities will
vary randomly from study to study depending on which sub-
jects have been selected from the population. The term ran-
dom reflects the fact that the parameter estimates (intercepts
and slopes) are free to vary across individuals; hence, they
have a variance. Although !0j is referred to as the random
intercept and !1j as the random slope, the term mixed regres-
sion model implies that these coefficients have both a fixed
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and a random component. Just as the Rij residuals are assumed
normally distributed with variance # 2, the U0j and U1j resid-
uals are assumed normally distributed with variances $0

2 and
$1

2. Because the random intercepts and random slopes are
often correlated, U0j and U1j also have covariance $01.

So far we have only presented models with a single predictor
at level 1 representing either time itself or a time-varying covari-
ate. A level 1 predictor serves to reduce the variance of the Rij

residuals, signified by # 2. If we want to explain even more of this
unexplained variance, we can include additional level 1 predic-
tors. Likewise, we can add any number of level 2 predictors to
reduce the variances $0

2 and $1
2 associated with U0j and U1j.

These predictors represent person-level characteristics such as
sociodemographic information, personality features, and so on.

To illustrate, assume that Z denotes a single level 2 pre-
dictor called hostility. Equations 2 and 3 can be modified to
reflect the contribution of hostility to the variability in the
random intercept and random slope:

!0j ! "00 " "01Zj " U0j

!1j ! "10 " "11Zj " U1j

The equation for !0j is known as an intercepts as outcomes
model and the equation for !1j as a slopes as outcomes model
owing to the fact that the intercepts and slopes at level 1 (!0j

and !1j) are treated as outcome variables at level 2, each
having their own intercepts ("00 and "10) and slopes ("01 and
"11). Like in the unconditional model (equations 2 and 3), "00

and "10 signify the mean intercept and slope, respectively,
across all individuals for Z ! 0. The parameter "01 represents
the slope of the regression equation predicting !0j from Zj, and
the parameter "11 represents the slope of the regression equa-
tion predicting !1j from Zj. In the longitudinal study tracking
change in BP, !0j would represent the association between
hostility and BP at time 0 or baseline, and !1j would represent the
association between hostility and rate of change in BP over time
(see Table 1 for a glossary of terms used in these models).

Before the development of mixed regression modeling tech-
niques, these equations were often estimated in a two-step OLS
estimation procedure. In the first step, ! coefficients would be
generated for each individual; these would then be treated as
outcomes in a second estimation procedure. Mixed regression
models provide more accurate standard errors compared with this
approach because they differentiate between the sampling error
associated with the estimated coefficients and the observation error
associated with the coefficients themselves, and use shrunken esti-
mates to correct for the effects of sampling variation (12).

When thinking about level 2 predictors, it is important to
distinguish between time- varying (state-like) and time-invari-
ant (trait-like) characteristics. In the example presented pre-
viously, hostility was conceptualized as a trait that remains
stable across time but can vary across individuals. It is thus
appropriately modeled as a level 2 predictor. One could also
measure hostility in a way that captures within-person fluctu-
ations over time, in which case it should be treated as a level

1 predictor. This is analogous to the way mood was modeled
as a level 1 covariate of BP in the diary study example.

Partitioning the within- and between-person sources of
variability in outcome data produces more accurate estimates
of associations between predictor and outcome variables rel-
ative to conventional regression and ANOVA approaches.

Centering
Centering involves shifting the zero point of a predictor’s

measurement scale to assign it a more meaningful reference.
Because the intercept is defined with respect to this zero point,
its interpretation will necessarily change. However, centering
will not alter the interpretation of the slope in a linear model.

When a variable is uncentered, the intercept is the expected
value of the outcome variable for a person whose score on the
predictor variable equals 0. For example, in studies of infant
development, it may be appropriate to structure the intercept
so that it reflects values of the outcome variables at the time
of birth (t ! 0). However, imagine that a particular outcome
variable such as number of spoken words was not assessed
until 10 months of age (t ! 10). The appropriate strategy in
this case would be to shift the time scale so that the intercept
reflects the value of this outcome variable at 10 months.

When the level 1 predictor is not time but rather a time-
varying covariate of the outcome, centering can take the form
of person-centering or grand-mean centering. When a level 1
predictor is person-centered, the intercept is the expected
value of the outcome for a person whose score on the predictor
variable equals the mean of his or her own observations. In a
diary study, for instance, person-centering can be used to

TABLE 1. Glossary of Symbols for Two-Level Mixed Regression
Models in Repeated-Measures Designs

Symbol Definition

Y
ij

Value of outcome measure at time i for individual j
Aij Value of level 1 predictor at time i for individual j
Rij Residual error in outcome measure at time i for

individual j
!0j Person-specific intercept for individual j
!1j Person-specific slope for individual j
"00 Average intercept across all individuals
"10 Average slope across all individuals
Zj Value of level 2 predictor for individual j
"01 Slope of level 2 regression equation predicting !0j

from Zj; denotes systematic deviations from "00

resulting from Zj

"11 Slope of level 2 regression equation predicting !1j

from Zj; denotes systematic deviations from "10

resulting from Zj

U0j Level 2 residual denoting the unexplained
deviation from "00 for individual j

U1j Level 2 residual denoting the unexplained
deviation from "10 for individual j

# 2 Variance of level 1 residuals Rij

$0
2 Variance of level 2 residuals U0j

$1
2 Variance of level 2 residuals U1j

$01 Covariance of level 2 residuals U0j and U1j
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determine how each person’s BP varies as a function of
departures away from his or her average mood across the day.
When a level 1 predictor is grand-mean centered, the intercept
is the expected value of the outcome for a person whose score
on the predictor variable equals the sample mean. So in a diary
study predicting BP from mood, grand-mean centering can be
used to relate each individual’s BP readings to deviations
away from the average mood of the group.

For level 2 (person-level) predictors, the relevant centering
option is grand-mean centering. When centered in this man-
ner, the intercept is the expected value of the outcome for a
person whose score on the level 2 predictor variable equals the
sample mean. This can be used to determine, for instance, how
the relationship between BP and mood varies as a function of
deviations away from the group mean on a trait-level charac-
teristic such as hostility.

Note that we have limited our discussion of centering options
to two-level nested structures, in which the highest level of
nesting represents the person. When working with multiple
groups represented by three-level data structures, group-mean
centering is another option. Centering is discussed in greater
detail elsewhere (6,7,9,13,15).

Applying Mixed Regression Models to
Psychosomatic Research
Example 1: Depression and Change in Relative Weight
in Older Adults
Obesity increases risk for a variety of adverse health out-

comes, including mortality, cardiovascular disease, and diabetes
(16–19). In older age, however, relative weight tends to decrease
as a result of the loss of lean muscle mass that may result from
declining physical health and activity levels (20–22). Because
depression is associated with reduced activity levels and in-
creased risk for chronic disease, we hypothesized that in older
adults, higher levels of depressive symptoms would be associated
with greater declines in relative weight over time.

The data are from a longitudinal study of 2812 older adults
(23). Participants reported on their weight and height at base-
line and during eight follow-up interviews, conducted at
yearly intervals, for a total of nine waves of outcome data. The
Center for Epidemiologic Studies–Depression (CES-D) scale
was used to assess depressive symptoms (24). The within-
person variable is time since baseline (in years). In addition to
baseline CES-D, we included the between-person variables of
age at baseline (in years) and sex as covariates. For the
purpose of this analysis, we centered age at 75 and CES-D
scores at the median value of 5.

Analytic Strategy
We used mixed regression models to test the association

between baseline CES-D scores and change in relative weight
during the 8-year follow-up period in the 2209 subjects who
had nonmissing CES-D data at baseline and %2 waves of
nonmissing body mass index (BMI) outcome data. Their mean

age at baseline was 73.8 and their mean BMI was 25.7 kg/m2.
The level 1 model was specified as follows:

BMIij ! !0j " !1jTIMEij " Rij

where BMIij represents the BMI value for person i at time j;
!0j represents the person-specific intercept, or baseline BMI
value; !1j represents the person-specific slope of change in
BMI over time; and Rij the residual error or deviation of the
observed BMI values for each person i at each interview j. We
then specified the level 2 model as follows:

!0j ! "00 " "01Zj " U0j

!1j ! "10 " "11Zj " U1j

where the person-specific !0j intercept is modeled as a func-
tion of the overall intercept "00 across all individuals, plus the
systematic deviations from "00 that are accounted for by fixed
variables Zj, plus the residual, unexplained deviation from !0j,
being U0j with variance $0

2. Similarly, the person-specific !1j

slope is modeled as a function of the overall slope of change
"10 across all individuals, plus the systematic deviations from
"10 that are accounted for by fixed variables Zj, plus the
residual, unexplained deviations from !1j, being U1j with
variance $1

2. The fixed Zj predictor variables include age, sex,
and CES-D scores, each of which may be associated with the
intercept !0j being the baseline value of BMI and with the
slope !1j being the rate of change in BMI over time. The main
hypothesis is therefore tested by the term "11 for the Zj for
CES-D, which represents the relationship between CES-D
scores and the rate of change in BMI over time. This term
represents the crosslevel interaction between the level 1 (with-
in-person) variable, time, and the level 2 (between-person)
variable, CES-D. We expected this term to be negative, be-
cause we hypothesized that higher CES-D scores would be
associated with greater declines in relative weight over time
(i.e., a more negative slope compared with the average slope).
The analysis proceeded in two steps. At the first step (model
A), we fit an unconditional level 2 model, that is, one without
any level 2 predictor variables. At the next step (model B), we
added the level 2 variables representing age, sex, and CES-D.

Depressive Symptoms and Rate of Change in Body
Mass Index
The results of model A (see Table 2) indicate that the

average BMI at baseline was 25.8. The unconditional estimate
for !1j, represented by the "10 for time (#0.206), indicates a
decline in BMI averaging 0.206 kg/m2 units per year. The
variance components indicate significant random coefficients
for the intercept (U0j ! 18.557, p $ .001) and slope (U1j !
0.118, p $ .001). Thus, there is evidence for significant
variability in the person-specific intercepts and the person-
specific rates of change in BMI over time. This justifies our
efforts to identify the determinants of the between-person
variation in BMI and change in BMI. We can use these
coefficients as a base with which to compare the results of
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subsequent models. The objective of entering additional pre-
dictors of BMI is to explain the variation in BMI initial status
and rate of change that exists between persons. If we select
relevant predictors of this process, we should expect a reduc-
tion in the size of these coefficients. The within-person resid-
ual variance (Rij) reflects the difference between observed and
predicted outcome scores resulting from the “random noise”
in the instruments we use to measure outcomes. More reliable
measurement instruments will normally reduce the magnitude
of this variance component.

The results of model B indicate that CES-D scores were
unrelated to baseline levels of BMI ("01 ! #0.002, p % .50).
In contrast, CES-D scores were significantly associated with
decline in BMI levels ("11 ! #0.003, p ! .03). The coeffi-
cient may be interpreted as follows: the average decline in
BMI per year, according to model B, is #0.222. It should be
noted that this estimate only applies to subjects who have a 0
value on all the covariates in the model; in other words, a
75-year-old (centered value of age) woman with a CES-D
score of 5 (centered value on the CES-D). Each one-point
increase on the CES-D above a score of 5 is associated with a
0.003 greater rate of yearly decline in BMI, and each one-
point decrease below a score of 5 is associated with a 0.003
smaller rate of yearly decline. Older age is associated with
lower BMI at baseline ("01 ! #0.121, p $ .001) and with
faster decline in BMI over time ("11 ! #0.012, p $ .001).
Male sex was not significantly associated with BMI levels at
baseline or with decline over time.

One way to illustrate the nature of the association between
CES-D scores and change in BMI is to use the results of the
last regression model (model B) to compute the predicted
values of BMI over time as a function of different levels of
CES-D (see Fig. 1). To that end, we selected CES-D scores in

this cohort corresponding to the 10th percentile (CES-D ! 0),
the median or 50th percentile (CES-D ! 5), and the 90th
percentile (CES-D ! 19). We then plotted the predicted
values of BMI until the end of follow up after selecting
specific values for age (75, the centered value for this vari-
able) and sex (female), the other two variables in the model
(see Fig. 1). Although there were only minimal differences in
predicted BMI levels at baseline between the three different
levels of CES-D, each higher CES-D score was associated
with a greater decline in BMI over time.

Inspection of the variance components reveals that addition of
the fixed effects in the level 2 model accounts for relatively small
portions of the between-person variability in initial status in BMI
(intercept) and rate of change in BMI (slope). We can compare
the change in each of the random coefficients from model A to
model B to determine the proportion of explained variance. For
the intercept, the proportion of additional variance may be com-
puted as ([18.557 # 17.927]/18.557) & 100%, or approximately
3.4%. Similarly, the reduction in the random slope is ([0.118 #
0.113]/0.118) & 100% or 3.1%. In other words, the fixed effects
account for approximately 3.4% of the variation in baseline BMI
values that exists between persons in this sample and 3.1% of the
variation in the linear rate of change in BMI.

Example 2: Communal Orientation Moderates the
Association Between Diurnal Cortisol Rhythm and
Abrasive Social Interactions
Dominance has been implicated as a risk factor for cardio-

vascular disease in prospective studies (e.g., (25,26)). Al-
though reactivity to social stress is thought to be a mechanism
for this link, laboratory studies of acute social strain have
yielded mixed findings (27–30). We reasoned that this incon-
sistency might be resolved by considering person–environ-

TABLE 2. Depressive Symptoms and Change in Body Mass Index During 8 Yr of Follow Up

Model A Model B

Coefficient (SE) p Coefficient (SE) p

Fixed effects
Intercept ("00 for !0j) 25.789 (0.093) $.001 25.754 (0.133) $.001
Time ("10 for !1j) #0.206 (0.009) $.001 #0.222 (0.013) $.001
Age #0.121 (0.014) $.001
Age & time #0.012 (0.002) $.001
Male sex #0.202 (0.180) .26
Male sex * time #0.002 (0.018) %.50
CES-D score ("01 for !0j) #0.002 (0.012) %.50
CES-D & time ("11 for !1j) #0.003 (0.001) .03

Variance (SD) p Variance (SD) p

Random effects
Level 1 residual (Rij) 1.994 (0.027) $.001 1.994 (0.027) $.001
Level 2 residualsa

Intercept (U0j) 18.557 (0.581) $.001 17.927 (0.562) $.001
Linear slope (U1j) 0.118 (0.006) $.001 0.113 (0.006) $.001

a Covariance parameters of level 2 residuals are not included in the table but were included in the analysis.
CES-D ! Center for Epidemiologic Studies–Depression; SE ! standard error; SD ! standard deviation.
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ment fit. People are more prone to physiological distress when
their preferred behavioral style clashes with situational de-
mands (e.g., (31)). Because social conflict should allow dom-
inant individuals to display their preferred style, which is to
exert control, they should evidence few signs of physiological
stress. In contrast, individuals who are low in dominance may
exhibit greater signs of physiological stress during discordant
interactions, because these situations may challenge their nor-
mally passive stance.

We recently investigated whether dominance moderates the
relationship between abrasive social interactions and diurnal
cortisol secretion in daily life. Cortisol secretion usually peaks
in the early morning and then declines throughout the day
(32). Exposure to chronic stressors may result in a flattened
diurnal rhythm (33,34). Disruptions in the regular pattern of
cortisol release could have ramifications for a variety of
biologic processes in the immune, circulatory, metabolic, and
nervous systems (33,35) and may predict physical health
problems (33,36,37).

Data were obtained from 87 healthy volunteers (82% fe-
male, mean age 29 years), 52 of whom were instructed to
collect data across 4 nonconsecutive days and 35 of whom
were instructed to collect data across 3 nonconsecutive days.
A handheld computer sounded a daily alarm at 1, 4, 9, and 11
hours after the participant’s planned wakeup time. Thus, am-
bulatory data collection occurred four times a day over a
period of either 3 or 4 days. Our outcome measure was diurnal
cortisol rhythm, which was computed by log-transforming the
raw values and then regressing the transformed values on
sampling times for each day separately. Note that we did not
use individual cortisol assessments as our outcome measure,
but rather the estimated cortisol rhythm we computed for each

day per participant. Thus, we have a two-level model with
cortisol rhythm across days nested within persons. Although
this data set in fact represents three levels of data collection
(cortisol output at each time-point nested with days in turn
nested within persons), we reduced it to a two-level structure
for the purpose of this example. In our own work, we have
analyzed these data with both three- and two-level models; the
results were similar.

Abrasive interactions were assessed using three questions
from the Diary of Ambulatory Behavioral States (38). Each item
used a 5-point scale ranging from 0 (none at all) to 4 (extremely).
We collapsed the responses to these three questions to create an
average measure of abrasive interactions at each time point.
Because our outcome measure (cortisol rhythm) represents a
day-level variable, we further collapsed these averages across the
four time points on each day to obtain a day-level measure for
abrasive interactions. However, the day-level responses were
highly skewed with few ratings in the 1 to 4 range. We therefore
recoded these scores to a dichotomous variable, with 0 indicating
no abrasive interactions on that day and 1 indicating one or more
abrasive interactions. This indicator created two groups of
roughly equal frequencies representing low and high levels of
abrasive interactions. This variable was used as the level 1
predictor in the ensuing analyses. Dominance (D) was measured
using the Unmitigated Agency subscale of the Extended Version
of the Personality Attributes Questionnaire (EPAQ) (39).

Analytic Strategy
The nested design of our study (either 3 or 4 days of data

collection nested within each participant) allowed us to use
mixed regression modeling to test whether the within-person
relationship between abrasive social interactions and diurnal

Figure 1. Change in body mass index as a function of depressive symptoms.
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patterns of cortisol secretion varies as a function of the be-
tween-person characteristic D. A two-level model was con-
structed with random slopes and intercepts at the first level
modeled as outcomes at the next level up. At level 1 (day-
level), the between-day variability in cortisol rhythm for each
individual was modeled as a function of abrasive social inter-
actions (AI):

Cortisol rhythmij ! !0j " !1j(AI) " Rij (4)

In this equation, the abrasive interactions covariate has been
person-centered. In general, level 1 centering will reduce
problems in estimation because it reduces the covariance
between the intercept and the slope (7). Centering also enables
us to ask how each individual’s cortisol rhythm changes in
response to fluctuations from his or her own usual pattern of
interactions. That is, the questions becomes: How does a
person’s cortisol rhythm differ on days when he or she has
high compared with low levels of abrasive interactions? As
evident from this question, the analysis is completely within-
person; centering eliminates the influence of between-person
differences in abrasive interactions on the outcome.

The regression coefficients !0j and !1j can be understood
as follows: For each individual j, !0j represents the expected
value of diurnal cortisol rhythm on average interaction days
(i.e., when abrasive exchanges are at person j’s mean daily
level), and !1j represents how diurnal cortisol rhythm varies in
response to deviations from person j’s average levels of abra-
sive interactions. The residual error associated with each ob-
servation is denoted by Rij.

At level 2 (person-level), the between-person variability in
!0j and !1j were modeled as a function of dominance:

!0j ! "00 " "01(Dj) " U0j

!1j ! "10 " "11(Dj) " U1j

Note that the dominance variable was grand-mean centered
so that Dj reflects the amount by which each person deviates
from the sample mean. In other words, Dj ! (Dj # Dmean).
This centering strategy allows for a more meaningful inter-
pretation of the intercept, because a score of 0 falls outside of
the range of possible dominance scores. With the dominance
score centered in this manner, the intercept parameters "00 and
"10 denote the expected values of !0j (diurnal cortisol rhythm
on typical interaction days) and !1j (the relationship between
diurnal cortisol rhythm and abrasive interactions) for a person
whose dominance score equals the sample mean. The slope
parameter "01 estimates the relationship between !0j and D, or
the main effect of D. It signifies whether diurnal cortisol
rhythm on typical interaction days varies according to be-
tween-person differences in dominance. However, our main
interest is in the slope parameter "11, which estimates the
relationship between !1j and D, or the D & AI interaction
effect. Importantly, this parameter enables us to test our hy-
pothesis that the relationship between diurnal cortisol rhythm
and abrasive interactions is moderated by this trait. The terms

U0j and U1j capture unexplained variability in !0j and !1j after
including this predictor.

A standard assumption of mixed regression models is that
within-person residuals are independent. However, as men-
tioned earlier, this is not always the case in diary studies in
which observations are so closely spaced together within the
same person. Models with different variance–covariance
structures can be compared using a likelihood ratio test, which
compares the deviances of models with different restrictions.
Deviance is a measure of lack of fit between the model and the
data. Using this option, we compared the fit of a standard
homogenous level 1 variance model (which also assumes
uncorrelated level 1 residuals) to the fit of an autoregressive
model, which assumes that level 1 residuals are correlated in
a time-decreasing fashion. The &2 statistic indicated that the
two models did not differ significantly for our data set (&2 !
10.92, p ! .141). We therefore assumed an uncorrelated
residual structure in the ensuing analysis. This lack of auto-
correlation in our data set may be the result of the wide time
intervals between measurements. In studies in which measure-
ment intervals are shorter, an autoregressive structure often
provides a better fit.

The analysis followed the same sequence as in the previous
example. At the first step (model A), we specified an uncon-
ditional model without the level 2 predictor D. At the next step
(model B), we added the level 2 predictor D. The coefficient
for the D & AI interaction represents the test of the hypoth-
esis. This two-step procedure allows us to compare the ran-
dom coefficients of model A and model B and calculate the
proportion of variance that is explained by including the level
2 predictor.

Abrasive Interactions, Cortisol Rhythm, and Dominance
The data were analyzed using the HLM software package

(40). However, the same model may also be fitted in other
software packages such as SAS (procedure MIXED) (41) and
SPSS (command VARCOMP) (42). Results of the analysis are
presented in Table 3. For the unconditional level 2 model
(model A), the expected (mean) cortisol rhythm for the overall
sample on average interaction days is "00 ! #0.053, which is
significantly different from 0. The estimated value of "10 is
0.003, which is nonsignificant. This suggests a very weak
association between cortisol rhythm and abrasive interactions
in the sample as a whole.

We now turn to the results of the level 2 model (model B).
The values for "00 and "10 now have slightly different inter-
pretations. These parameters estimate, respectively, the ex-
pected values of cortisol rhythm on average interaction days
and the relationship between cortisol rhythm and abrasive
interactions for a person whose D score equals the sample
mean (Dmean ! 2.1). The estimates were not appreciably
different from those obtained in the unconditional level 2
model (model A).

Importantly, and confirming our hypothesis, the level 2
model reveals a significant D & AI interaction effect ("11 !
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#0.012, p ! .02). This indicates that the strength of the
within-person association between abrasive interactions and
cortisol rhythm is moderated by trait dominance; the relation-
ship between cortisol rhythm and abrasive interactions
becomes increasingly negative for each D score above the
sample mean and increasingly positive for each D score below
the sample mean. So for individuals with high trait domi-
nance, cortisol rhythms tend to be steeper on days when
abrasive interactions exceed usual levels but flatter on days
when abrasive interactions fall below usual levels. The finding
of flatter (i.e., more dysregulated) rhythms on low conflict
days was surprising, because we had expected cortisol
rhythms to be similar for dominant persons regardless of
frequency of conflict. It may be that for persons with a strong
need for interpersonal control, neutral social interactions are
perceived as potential threats rather than opportunities for
affiliation. The reverse pattern is observed for individuals with
low trait dominance whose cortisol rhythms tend to be flatter
on days when abrasive interactions exceed usual levels and
steeper on days when abrasive interactions fall below usual
levels. Thus, the biologic consequences of conflict appear to
be higher for persons who are low in dominance, possibly
because they view conflict as more challenging or anxiety-
provoking. However, in the absence of conflict, they may have
a biologic advantage compared with their high-dominance
counterparts. This interaction effect is illustrated in Figure 2
for D scores corresponding to the 25th, 50th, and 75th per-
centiles of the distribution.

Before leaving this example, we draw attention to the
variance components statistics in Table 3, which tell us how
much of the variability in the outcome measure remains un-
accounted for at each level of the model. By comparing the
random coefficients from model A and model B, we can
determine the proportion of between-person variance that is
explained by inclusion of the level 2 predictor variable D. For
the random intercept, there was no detectable change in vari-

ance between the two models. That is, the fixed effects did not
contribute in any appreciable way to the between-person vari-
ability in cortisol rhythms on average interaction days. The pro-
portion of change in the slope variance may be computed as
([0.00016 # 0.00015]/0.00016) & 100%, which is approxi-
mately 6%. This indicates that the fixed effects account for
approximately 6% of the between-person variability in the rela-
tionship between cortisol rhythm and daily abrasive interactions.

CONCLUSION
Mixed regression models provide powerful tools for the

analysis of change in repeated-measures studies. They can be
applied in a variety of settings, ranging from relatively small-
scale laboratory studies in which data are collected over the
course of minutes, hours, or days, to large-scale epidemiologic
investigations with follow-up periods lasting years. Many
psychosomatic studies could benefit from the use of these
models, because they often involve repeated measurements of
outcomes within individuals or other types of nested data.

Figure 2. Diurnal cortisol rhythm as a function of dominance on days when
the frequency of abrasive social interactions is higher or lower than usual.

TABLE 3 Cortisol Rhythm and Abrasive Social Interactions as a Function of Dominance

Model A Model B

Coefficient (SE) p p Coefficient (SE) p p

Fixed Effects
Intercept ("00 for !0j) #0.053 (.003) $.001 #0.053 (.003) $.001
AI slope ("10 for !1j) 0.003 (.005) %.50 0.003 (.005) %.50
D ("01 for !0j) 0.001 (.004) %.50
D & AI ("11 for !1j) 0.021 #0.012 (.005) .021

Variance (SD) p Variance (SD) p

Random effects
Level 1 residual (Rij ) 0.00080 (0.028) NAa 0.00079 (0.028) NAa

Level 2 residuals
Intercept (U0j) 0.00039 (0.020) $.001 0.00039 (0.020) $.001
Linear slope (U1j) 0.00016 (0.012) %.25 0.00015 (0.012) %.25

a The p value has not been reported here because HLM software does not provide a significance test for level 1 residuals.
SE ! standard error; SD ! standard deviation; NA ! not available; HLM ! hierarchical linear model.

S T A T I S T I C A L C O R N E R

MIXED REGRESSION MODELS

877Psychosomatic Medicine 68:870–878 (2006)



These models will not necessarily produce different results
compared with more traditional methods. In general, however,
they tend to yield more accurate results, thereby increasing
the likelihood that the findings will be replicable.
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